Montana Common Core Standards # **Mathematical Practice and Content** November 2011 # Montana Mathematics K-12 Content Standards | Introduction | 2 | |--|----| | Understanding mathematics | 3 | | How to read the grade level standards | 4 | | Montana Mathematics Standards for Mathematical Practice | 5 | | Standards for Mathematical Practice: Grade 5 Explanations and Examples | 9 | | Montana Mathematics Grade 5 Content Standards | 10 | | Glossary | 14 | | Tables | 17 | | Learning Progressions by Domain | 20 | ### Montana Mathematics K-12 Content Standards ### Introduction ### Toward greater focus and coherence Mathematics experiences in early childhood settings should concentrate on (1) number (which includes whole number, operations, and relations) and (2) geometry, spatial relations, and measurement, with more mathematics learning time devoted to number than to other topics. Mathematical process goals should be integrated in these content areas. —Mathematics Learning in Early Childhood, National Research Council, 2009 The composite standards [of Hong Kong, Korea and Singapore] have a number of features that can inform an international benchmarking process for the development of K–6 mathematics standards in the U.S. First, the composite standards concentrate the early learning of mathematics on the number, measurement, and geometry strands with less emphasis on data analysis and little exposure to algebra. The Hong Kong standards for grades 1–3 devote approximately half the targeted time to numbers and almost all the time remaining to geometry and measurement. — Ginsburg, Leinwand and Decker, 2009 Because the mathematics concepts in [U.S.] textbooks are often weak, the presentation becomes more mechanical than is ideal. We looked at both traditional and non-traditional textbooks used in the US and found this conceptual weakness in both. — Ginsburg et al., 2005 There are many ways to organize curricula. The challenge, now rarely met, is to avoid those that distort mathematics and turn off students. — Steen, 2007 For over a decade, research studies of mathematics education in high-performing countries have pointed to the conclusion that the mathematics curriculum in the United States must become substantially more focused and coherent in order to improve mathematics achievement in this country. To deliver on the promise of common standards, the standards must address the problem of a curriculum that is "a mile wide and an inch deep." These Standards are a substantial answer to that challenge. It is important to recognize that "fewer standards" are no substitute for focused standards. Achieving "fewer standards" would be easy to do by resorting to broad, general statements. Instead, these Standards aim for clarity and specificity. Assessing the coherence of a set of standards is more difficult than assessing their focus. William Schmidt and Richard Houang (2002) have said that content standards and curricula are coherent if they are: articulated over time as a sequence of topics and performances that are logical and reflect, where appropriate, the sequential or hierarchical nature of the disciplinary content from which the subject matter derives. That is, what and how students are taught should reflect not only the topics that fall within a certain academic discipline, but also the key ideas that determine how knowledge is organized and generated within that discipline. This implies that "to be coherent," a set of content standards must evolve from particulars (e.g., the meaning and operations of whole numbers, including simple math facts and routine computational procedures associated with whole numbers and fractions) to deeper structures inherent in the discipline. These deeper structures then serve as a means for connecting the particulars (such as an understanding of the rational number system and its properties). (emphasis added) These Standards endeavor to follow such a design, not only by stressing conceptual understanding of key ideas, but also by continually returning to organizing principles such as place value or the laws of arithmetic to structure those ideas. In addition, the "sequence of topics and performances" that is outlined in a body of mathematics standards must also respect what is known about how students learn. As Confrey (2007) points out, developing "sequenced obstacles and challenges for students...absent the insights about meaning that derive from careful study of learning, would be unfortunate and unwise." In recognition of this, the development of these Standards began with research-based learning progressions detailing what is known today about how students' mathematical knowledge, skill, and understanding develop over time. ### Montana Mathematics K-12 Content Standards # **Understanding mathematics** These Standards define what students should understand and be able to do in their study of mathematics. Asking a student to understand something means asking a teacher to assess whether the student has understood it. But what does mathematical understanding look like? One hallmark of mathematical understanding is the ability to justify, in a way appropriate to the student's mathematical maturity, why a particular mathematical statement is true or where a mathematical rule comes from. There is a world of difference between a student who can summon a mnemonic device to expand a product such as (a + b)(x + y) and a student who can explain where the mnemonic comes from. The student who can explain the rule understands the mathematics, and may have a better chance to succeed at a less familiar task such as expanding (a + b + c)(x + y). Mathematical understanding and procedural skill are equally important, and both are assessable using mathematical tasks of sufficient richness. The Standards set grade-specific standards but do not define the intervention methods or materials necessary to support students who are well below or well above grade-level expectations. It is also beyond the scope of the Standards to define the full range of supports appropriate for English language learners and for students with special needs. At the same time, all students must have the opportunity to learn and meet the same high standards if they are to access the knowledge and skills necessary in their post-school lives. The Standards should be read as allowing for the widest possible range of students to participate fully from the outset, along with appropriate accommodations to ensure maximum participation of students with special education needs. For example, for students with disabilities reading should allow for use of Braille, screen reader technology, or other assistive devices, while writing should include the use of a scribe, computer, or speech-to-text technology. In a similar vein, speaking and listening should be interpreted broadly to include sign language. No set of grade-specific standards can fully reflect the great variety in abilities, needs, learning rates, and achievement levels of students in any given classroom. However, the Standards do provide clear signposts along the way to the goal of college and career readiness for all students. The Standards begin with eight Standards for Mathematical Practice. # How to read the grade level standards Standards define what students should understand and be able to do. **Clusters** summarize groups of related standards. Note that standards from different clusters may sometimes be closely related, because mathematics is a connected subject. Domains are larger groups of related standards. Standards from different domains may sometimes be closely related. These Standards do not dictate curriculum or teaching methods. For example, just because topic A appears before topic B in the standards for a given grade, it does not necessarily mean that topic A must be taught before topic B. A teacher might prefer to teach topic B before topic A, or might choose to highlight connections by teaching topic A and topic B at the same time. Or, a teacher might prefer to teach a topic of his or her own choosing that leads, as a byproduct, to students reaching the standards for topics A and B. What students can learn at any particular grade level depends upon what they have learned before. Ideally then, each standard in this document might have been phrased in the form, "Students who already know A should next come to learn B." But at present this approach is unrealistic—not least because existing education research cannot specify all such learning pathways. Of necessity therefore, grade placements for specific topics have been made on the basis of state and international comparisons and the collective experience and collective professional judgment of educators, researchers and mathematicians. One promise of common state standards is that over time they will allow research on learning progressions to inform and improve the design of standards to a much greater extent than is possible today. Learning opportunities will continue to vary across schools and school systems, and educators should make every effort to meet the needs of individual students based on their current understanding. These Standards are not intended to be new names for old ways of doing business. They are a call to take the next step. It is time for states to work together to build on lessons learned from two decades of standards based reforms. It is time to recognize that these standards are not just promises to our children, but promises we intend to keep. ### Montana Mathematics Standards for Mathematical Practice The Standards for Mathematical Practice describe varieties of expertise that mathematics educators at all levels should seek to develop in their students. These practices rest on important "processes and proficiencies" with long-standing importance in mathematics education. The first of these are the NCTM process
standards of problem solving, reasoning and proof, communication, representation, and connections. The second are the strands of mathematical proficiency specified in the National Research Council's report *Adding It Up*: adaptive reasoning, strategic competence, conceptual understanding (comprehension of mathematical concepts, operations and relations), procedural fluency (skill in carrying out procedures flexibly, accurately, efficiently and appropriately), and productive disposition (habitual inclination to see mathematics as sensible, useful, and worthwhile, coupled with a belief in diligence and one's own efficacy). ### 1. Make sense of problems and persevere in solving them. Mathematically proficient students start by explaining to themselves the meaning of a problem and looking for entry points to its solution. They analyze givens, constraints, relationships, and goals. They make conjectures about the form and meaning of the solution and plan a solution pathway rather than simply jumping into a solution attempt. They consider analogous problems, and try special cases and simpler forms of the original problem in order to gain insight into its solution. They monitor and evaluate their progress and change course if necessary. Older students might, depending on the context of the problem, transform algebraic expressions or change the viewing window on their graphing calculator to get the information they need. Mathematically proficient students can explain correspondences between equations, verbal descriptions, tables, and graphs or draw diagrams of important features and relationships, graph data, and search for regularity or trends. Younger students might rely on using concrete objects or pictures to help conceptualize and solve a problem. Mathematically proficient students check their answers to problems using a different method, and they continually ask themselves, "Does this make sense?" They can understand the approaches of others to solving complex problems and identify correspondences between different approaches. Building on the inherent problem-solving abilities of people over time, students can understand that mathematics is relevant when studied in a cultural context that applies to real-world situations and environments. ### 2. Reason abstractly and quantitatively. Mathematically proficient students make sense of quantities and their relationships in problem situations. They bring two complementary abilities to bear on problems involving quantitative relationships: the ability to *decontextualize*—to abstract a given situation and represent it symbolically and manipulate the representing symbols as if they have a life of their own, without necessarily attending to their referents—and the ability to *contextualize*, to pause as needed during the manipulation process in order to probe into the referents for the symbols involved. Quantitative reasoning entails habits of creating a coherent representation of the problem at hand; considering the units involved; attending to the meaning of quantities, not just how to compute them; and knowing and flexibly using different properties of operations and objects. ### 3. Construct viable arguments and critique the reasoning of others. Mathematically proficient students understand and use stated assumptions, definitions, and previously established results in constructing arguments. They make conjectures and build a logical progression of statements to explore the truth of their conjectures. They are able to analyze situations by breaking them into cases, and can recognize and use counterexamples. They justify their conclusions, communicate them to others, and respond to the arguments of others. They reason inductively about data, making plausible arguments that take into account the context from which the data arose. Mathematically proficient students are also able to compare the effectiveness of two plausible arguments, distinguish correct logic or reasoning from that which is flawed, and—if there is a flaw in an argument—explain what it is. Elementary students can construct arguments using concrete referents such as objects, drawings, diagrams, and actions within a cultural context, including those of Montana American Indians. Such arguments can make sense and be correct, even though they are not generalized or made formal until later grades. Later, students learn to determine domains to which an argument applies. Students at all grades can listen or read the arguments of others, decide whether they make sense, and ask useful questions to clarify or improve the arguments. ### Montana Mathematics Standards for Mathematical Practice ### 4. Model with mathematics. Mathematically proficient students can apply the mathematics they know to solve problems arising in everyday life, society, and the workplace. This includes solving problems within a cultural context, including those of Montana American Indians. In early grades, this might be as simple as writing an addition equation to describe a situation. In middle grades, a student might apply proportional reasoning to plan a school event or analyze a problem in the community. By high school, a student might use geometry to solve a design problem or use a function to describe how one quantity of interest depends on another. Mathematically proficient students who can apply what they know are comfortable making assumptions and approximations to simplify a complicated situation, realizing that these may need revision later. They are able to identify important quantities in a practical situation and map their relationships using such tools as diagrams, two-way tables, graphs, flowcharts and formulas. They can analyze those relationships mathematically to draw conclusions. They routinely interpret their mathematical results in the context of the situation and reflect on whether the results make sense, possibly improving the model if it has not served its purpose. ### 5. Use appropriate tools strategically. Mathematically proficient students consider the available tools when solving a mathematical problem. These tools might include pencil and paper, concrete models, a ruler, a protractor, a calculator, a spreadsheet, a computer algebra system, a statistical package, or dynamic geometry software. Proficient students are sufficiently familiar with tools appropriate for their grade or course to make sound decisions about when each of these tools might be helpful, recognizing both the insight to be gained and their limitations. For example, mathematically proficient high school students analyze graphs of functions and solutions generated using a graphing calculator. They detect possible errors by strategically using estimation and other mathematical knowledge. When making mathematical models, they know that technology can enable them to visualize the results of varying assumptions, explore consequences, and compare predictions with data. Mathematically proficient students at various grade levels are able to identify relevant external mathematical resources, such as digital content located on a website, and use them to pose or solve problems. They are able to use technological tools to explore and deepen their understanding of concepts. ### 6. Attend to precision. Mathematically proficient students try to communicate precisely to others. They try to use clear definitions in discussion with others and in their own reasoning. They state the meaning of the symbols they choose, including using the equal sign consistently and appropriately. They are careful about specifying units of measure, and labeling axes to clarify the correspondence with quantities in a problem. They calculate accurately and efficiently, express numerical answers with a degree of precision appropriate for the problem context. In the elementary grades, students give carefully formulated explanations to each other. By the time they reach high school they have learned to examine claims and make explicit use of definitions. ### 7. Look for and make use of structure. Mathematically proficient students look closely to discern a pattern or structure. Young students, for example, might notice that three and seven more is the same amount as seven and three more, or they may sort a collection of shapes according to how many sides the shapes have. Later, students will see 7×8 equals the well remembered $7 \times 5 + 7 \times 3$, in preparation for learning about the distributive property. In the expression $x^2 + 9x + 14$, older students can see the 14 as 2×7 and the 9 as 2 + 7. They recognize the significance of an existing line in a geometric figure and can use the strategy of drawing an auxiliary line for solving problems. They also can step back for an overview and shift perspective. They can see complicated things, such as some algebraic expressions, as single objects or as being composed of several objects. For example, they can see $5 - 3(x - y)^2$ as 5 minus a positive number times a square and use that to realize that its value cannot be more than 5 for any real numbers x and y. ### 8. Look for and express regularity in repeated reasoning. Mathematically proficient students notice if calculations are repeated, and look both for general methods and for shortcuts. Upper elementary students might notice when dividing 25 by 11 that they are repeating the same calculations over and over again, and conclude they have a repeating decimal. By paying attention to the calculation of slope as they repeatedly check whether points are on the line through (1, 2) with slope 3, middle school students might abstract the equation (y - 2)/(x - 1) = 3. Noticing the regularity in the way terms cancel when expanding (x - 1)(x + 1), $(x - 1)(x^2 + x + 1)$, and $(x - 1)(x^3 + x^2 + x + 1)$ might lead them to the general formula for the sum of a geometric series. As they work to solve a problem, mathematically proficient students maintain oversight of the
process, while attending to the details. They continually evaluate the reasonableness of their intermediate results. # Grouping the practice standards Seeing structure and generalizing Modeling and using tools Reasoning and explaining (No. н Standards for Mathematical Practice 6- 0 8. Look for and express regularity William McCallum The University of Arizona 3. Construct viable arguments and critique the reasoning of 7. Look for and make use of 4. Model with mathematics 2. Reason abstractly and 5. Use appropriate tools in repeated reasoning. quantitatively strategically structure. Attend to precision them Make sense of problems and persevere in solving ### Montana Mathematics Standards for Mathematical Practice ### Connecting the Standards for Mathematical Practice to the Standards for Mathematical Content The Standards for Mathematical Practice describe ways in which developing student practitioners of the discipline of mathematics increasingly ought to engage with the subject matter as they grow in mathematical maturity and expertise throughout the elementary, middle and high school years. Designers of curricula, assessments, and professional development should all attend to the need to connect the mathematical practices to mathematical content in mathematics instruction. The Standards for Mathematical Content are a balanced combination of procedure and understanding. Expectations that begin with the word "understand" are often especially good opportunities to connect the practices to the content. Students who lack understanding of a topic may rely on procedures too heavily. Without a flexible base from which to work, they may be less likely to consider analogous problems, represent problems coherently, justify conclusions, apply the mathematics to practical situations, use technology mindfully to work with the mathematics, explain the mathematics accurately to other students, step back for an overview, or deviate from a known procedure to find a shortcut. In short, a lack of understanding effectively prevents a student from engaging in the mathematical practices. In this respect, those content standards which set an expectation of understanding are potential "points of intersection" between the Standards for Mathematical Content and the Standards for Mathematical Practice. These points of intersection are intended to be weighted toward central and generative concepts in the school mathematics curriculum that most merit the time, resources, innovative energies, and focus necessary to qualitatively improve the curriculum, instruction, assessment, professional development, and student achievement in mathematics. Mathematics is a human endeavor with scientific, social, and cultural relevance. Relevant context creates an opportunity for student ownership of the study of mathematics. In Montana, the Constitution pursuant to Article X Sect 1(2) and statutes §20-1-501 and §20-9-309 2(c) MCA, calls for mathematics instruction that incorporates the distinct and unique cultural heritage of Montana American Indians. Cultural context and the Standards for Mathematical Practices together provide opportunities to engage students in culturally relevant learning of mathematics and create criteria to increase accuracy and authenticity of resources. Both mathematics and culture are found everywhere, therefore, the incorporation of contextually relevant mathematics allows for the application of mathematical skills and understandings that makes sense for all students. Pursuant to Article X Sect 1(2) of the Constitution of the state of Montana and statutes $\S 20$ -1-501 and $\S 20$ -9-309 2(c) MCA, the implementation of these standards must incorporate the distinct and unique cultural heritage of Montana American Indians. | Standards | Explanations and Examples | |--|--| | Students are expected to: | The Standards for Mathematical Practice describe ways in which students ought to engage with the subject matter as they grow in mathematical maturity and expertise. | | 5.MP.1. Make sense of problems and persevere in solving them. | Students solve problems by applying their understanding of operations with whole numbers, decimals, and fractions including mixed numbers. They solve problems related to volume and measurement conversions. Students seek the meaning of a problem and look for efficient ways to represent and solve it. They may check their thinking by asking themselves, "What is the most efficient way to solve the problem?", "Does this make sense?", and "Can I solve the problem in a different way?". | | 5.MP.2. Reason abstractly and quantitatively. | Fifth graders should recognize that a number represents a specific quantity. They connect quantities to written symbols and create a logical representation of the problem at hand, considering both the appropriate units involved and the meaning of quantities. They extend this understanding from whole numbers to their work with fractions and decimals. Students write simple expressions that record calculations with numbers and represent or round numbers using place value concepts. | | 5.MP.3. Construct viable arguments and critique the reasoning of others. | In fifth grade, students may construct arguments using concrete referents, such as objects, pictures, and drawings. They explain calculations based upon models and properties of operations and rules that generate patterns. They demonstrate and explain the relationship between volume and multiplication. They refine their mathematical communication skills as they participate in mathematical discussions involving questions like "How did you get that?" and "Why is that true?" They explain their thinking to others and respond to others' thinking. | | 5.MP.4. Model with mathematics. | Students experiment with representing problem situations in multiple ways including numbers, words (mathematical language), drawing pictures, using objects, making a chart, list, or graph, creating equations, etc. Students need opportunities to connect the different representations and explain the connections. They should be able to use all of these representations as needed. Fifth graders should evaluate their results in the context of the situation and whether the results make sense. They also evaluate the utility of models to determine which models are most useful and efficient to solve problems. | | 5.MP.5. Use appropriate tools strategically. | Fifth graders consider the available tools (including estimation) when solving a mathematical problem and decide when certain tools might be helpful. For instance, they may use unit cubes to fill a rectangular prism and then use a ruler to measure the dimensions. They use graph paper to accurately create graphs and solve problems or make predictions from real world data. | | 5.MP.6. Attend to precision. | Students continue to refine their mathematical communication skills by using clear and precise language in their discussions with others and in their own reasoning. Students use appropriate terminology when referring to expressions, fractions, geometric figures, and coordinate grids. They are careful about specifying units of measure and state the meaning of the symbols they choose. For instance, when figuring out the volume of a rectangular prism they record their answers in cubic units. | | 5.MP.7. Look for and make use of structure. | In fifth grade, students look closely to discover a pattern or structure. For instance, students use properties of operations as strategies to add, subtract, multiply and divide with whole numbers, fractions, and decimals. They examine numerical patterns and relate them to a rule or a graphical representation. | | 5.MP.8. Look for and express regularity in repeated reasoning. | Fifth graders use repeated reasoning to understand algorithms and make generalizations about patterns. Students connect place value and their prior work with operations to understand algorithms to fluently multiply multi-digit numbers and perform all operations with decimals to hundredths. Students explore operations with fractions with visual models and begin to formulate generalizations. | Explanations and Examples Grade 1 Arizona Department of Education: Standards and Assessment Division ### Montana Mathematics Grade 5 Content Standards In Grade 5, instructional time should focus on three critical areas: (1) developing fluency with addition and subtraction of fractions, and developing understanding of the multiplication of fractions and of division of fractions in limited cases (unit fractions divided by whole numbers and whole numbers divided by unit fractions); (2) extending division to 2-digit divisors, integrating decimal fractions into the place value system and developing understanding of operations with decimals to hundredths, and developing fluency with whole number and decimal operations; and (3) developing understanding of volume. - 1. Students apply their understanding of fractions and fraction models to represent the addition and subtraction of fractions with unlike denominators as equivalent calculations with like denominators. They develop fluency in calculating sums and differences of fractions, and make reasonable estimates of them. Students also use the meaning of fractions, of multiplication and division, and
the relationship between multiplication and division to understand and explain why the procedures for multiplying and dividing fractions make sense. (Note: this is limited to the case of dividing unit fractions by whole numbers and whole numbers by unit fractions.) - 2. Students develop understanding of why division procedures work based on the meaning of base-ten numerals and properties of operations. They finalize fluency with multi-digit addition, subtraction, multiplication, and division. They apply their understandings of models for decimals, decimal notation, and properties of operations to add and subtract decimals to hundredths. They develop fluency in these computations, and make reasonable estimates of their results. Students use the relationship between decimals and fractions, as well as the relationship between finite decimals and whole numbers (i.e., a finite decimal multiplied by an appropriate power of 10 is a whole number), to understand and explain why the procedures for multiplying and dividing finite decimals make sense. They compute products and quotients of decimals to hundredths efficiently and accurately. - 3. Students recognize volume as an attribute of three-dimensional space. They understand that volume can be measured by finding the total number of same-size units of volume required to fill the space without gaps or overlaps. They understand that a 1-unit by 1-unit by 1-unit cube is the standard unit for measuring volume. They select appropriate units, strategies, and tools for solving problems that involve estimating and measuring volume. They decompose three-dimensional shapes and find volumes of right rectangular prisms by viewing them as decomposed into layers of arrays of cubes. They measure necessary attributes of shapes in order to determine volumes to solve real world and mathematical problems. ### **Mathematical Practices** - 1. Make sense of problems and persevere in solving them. - 2. Reason abstractly and quantitatively. - 3. Construct viable arguments and critique the reasoning of others. - 4. Model with mathematics. - 5. Use appropriate tools strategically. - 6. Attend to precision. - 7. Look for and make use of structure. - 8. Look for and express regularity in repeated reasoning. ### **Grade 5 Overview** ### **Operations and Algebraic Thinking** - Write and interpret numerical expressions. - Analyze patterns and relationships. ### **Number and Operations in Base Ten** - Understand the place value system. - Perform operations with multi-digit whole numbers and with decimals to hundredths ### **Number and Operations—Fractions** - Use equivalent fractions as a strategy to add and subtract fractions. - Apply and extend previous understandings of multiplication and division to multiply and divide fractions. ### **Measurement and Data** - Convert like measurement units within a given measurement system. - Represent and interpret data. - Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. ### Geometry - Graph points on the coordinate plane to solve real-world and mathematical problems. - Classify two-dimensional figures into categories based on their properties. ### **Operations and Algebraic Thinking** ### 5.OA ### Write and interpret numerical expressions. - 1. Use parentheses, brackets, or braces in numerical expressions, and evaluate expressions with these symbols. - 2. Write simple expressions that record calculations with numbers, and interpret numerical expressions without evaluating them. For example, express the calculation "add 8 and 7, then multiply by 2" as $2 \times (8 + 7)$. Recognize that $3 \times (18932 + 921)$ is three times as large as 18932 + 921, without having to calculate the indicated sum or product. ### Analyze patterns and relationships. 3. Generate two numerical patterns using two given rules. Identify apparent relationships between corresponding terms. Form ordered pairs consisting of corresponding terms from the two patterns, and graph the ordered pairs on a coordinate plane. For example, given the rule "Add 3" and the starting number 0, and given the rule "Add 6" and the starting number 0, generate terms in the resulting sequences, and observe that the terms in one sequence are twice the corresponding terms in the other sequence. Explain informally why this is so. ### **Number and Operations in Base Ten** 5.NBT ### Understand the place value system. - 1. Recognize that in a multi-digit number, a digit in one place represents 10 times as much as it represents in the place to its right and 1/10 of what it represents in the place to its left. - 2. Explain patterns in the number of zeros of the product when multiplying a number by powers of 10, and explain patterns in the placement of the decimal point when a decimal is multiplied or divided by a power of 10. Use whole-number exponents to denote powers of 10. - 3. Read, write, and compare decimals to thousandths. - a. Read and write decimals to thousandths using base-ten numerals, number names, and expanded form, e.g., $347.392 = 3 \times 100 + 4 \times 10 + 7 \times 1 + 3 \times (1/10) + 9 \times (1/100) + 2 \times (1/1000)$. - b. Compare two decimals to thousandths based on meanings of the digits in each place, using >, =, and < symbols to record the results of comparisons. - 4. Use place value understanding to round decimals to any place. ### Perform operations with multi-digit whole numbers and with decimals to hundredths. - 5. Fluently multiply multi-digit whole numbers using the standard algorithm. - 6. Find whole-number quotients of whole numbers with up to four-digit dividends and two-digit divisors, using strategies based on place value, the properties of operations, and/or the relationship between multiplication and division. Illustrate and explain the calculation by using equations, rectangular arrays, and/or area models. - 7. Add, subtract, multiply, and divide decimals to hundredths, using concrete models or drawings within cultural contexts, including those of Montana American Indians, and strategies based on place value, properties of operations, and/or the relationship between addition and subtraction; relate the strategy to a written method and explain the reasoning used. ### **Number and Operations—Fractions** **5.NF** ### Use equivalent fractions as a strategy to add and subtract fractions. - 1. Add and subtract fractions with unlike denominators (including mixed numbers) by replacing given fractions with equivalent fractions in such a way as to produce an equivalent sum or difference of fractions with like denominators. For example, 2/3 + 5/4 = 8/12 + 15/12 = 23/12. (In general, a/b + c/d = (ad + bc)/bd.) - 2. Solve word problems involving addition and subtraction of fractions referring to the same whole, including cases of unlike denominators, e.g., by using visual fraction models or equations to represent the problem. Use benchmark fractions and number sense of fractions to estimate mentally and assess the reasonableness of answers. For example, recognize an incorrect result 2/5 + 1/2 = 3/7, by observing that 3/7 < 1/2. Montana Common Core Standards for Mathematical Practices and Mathematics Content ### Apply and extend previous understandings of multiplication and division to multiply and divide fractions. - 3. Interpret a fraction as division of the numerator by the denominator $(a/b = a \div b)$. Solve word problems involving division of whole numbers leading to answers in the form of fractions or mixed numbers, e.g., by using visual fraction models or equations to represent the problem. For example, interpret 3/4 as the result of dividing 3 by 4, noting that 3/4 multiplied by 4 equals 3, and that when 3 wholes are shared equally among 4 people each person has a share of size 3/4. If 9 people want to share a 50-pound sack of rice equally by weight, how many pounds of rice should each person get? Between what two whole numbers does your answer lie? - 4. Apply and extend previous understandings of multiplication to multiply a fraction or whole number by a fraction. - a. Interpret the product $(a/b) \times q$ as a parts of a partition of q into b equal parts; equivalently, as the result of a sequence of operations $a \times q \div b$. For example, use a visual fraction model to show $(2/3) \times 4 = 8/3$, and create a story context for this equation within cultural contexts, including those of Montana American Indians. Do the same with $(2/3) \times (4/5) = 8/15$. (In general, $(a/b) \times (c/d) = ac/bd$.) - b. Find the area of a rectangle with fractional side lengths by tiling it with unit squares of the appropriate unit fraction side lengths, and show that the area is the same as would be found by multiplying the side lengths. Multiply fractional side lengths to find areas of rectangles, and represent fraction products as rectangular areas. - 5. Interpret multiplication as scaling (resizing), by: - a. Comparing the size of a product to the size of one factor on the basis of the size of the other factor, without performing the indicated multiplication. - b. Explaining why multiplying a given number by a fraction greater than 1 results in a product greater than the given number (recognizing multiplication by whole numbers greater than 1 as a familiar case); explaining why multiplying a given number by a fraction less than 1 results in a product smaller than the given number; and relating the principle of fraction equivalence $a/b = (n \times a)/(n \times b)$ to the effect of multiplying a/b by 1. - 6. Solve real world problems involving multiplication of fractions and mixed numbers, e.g., by using visual fraction models or equations to represent the problem within cultural contexts, including those of Montana American Indians. - 7. Apply and extend previous understandings of division to divide unit fractions by whole numbers and whole numbers by unit fractions.¹ - a. Interpret division of a unit fraction by a
non-zero whole number, and compute such quotients. For example, create a story context within cultural contexts, including those of Montana American Indians, for $(1/3) \div 4$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $(1/3) \div 4 = 1/12$ because $(1/12) \times 4 = 1/3$. - b. Interpret division of a whole number by a unit fraction, and compute such quotients. For example, create a story context within cultural contexts, including those of Montana American Indians, for $4 \div (1/5)$, and use a visual fraction model to show the quotient. Use the relationship between multiplication and division to explain that $4 \div (1/5) = 20$ because $20 \times (1/5) = 4$. - c. Solve real world problems involving division of unit fractions by non-zero whole numbers and division of whole numbers by unit fractions, e.g., by using visual fraction models and equations to represent the problem. For example, how much chocolate will each person get if 3 people share 1/2 lb of chocolate equally? How many 1/3-cup servings are in 2 cups of raisins? Measurement and Data 5.MD ### Convert like measurement units within a given measurement system. 1. Convert among different-sized standard measurement units within a given measurement system (e.g., convert 5 cm to 0.05 m), and use these conversions in solving multi-step, real world problems within a cultural context, including those of Montana American Indians. ### Represent and interpret data. 2. Make a line plot to display a data set of measurements in fractions of a unit (1/2, 1/4, 1/8). Use operations on fractions for this grade to solve problems involving information presented in line plots. For example, given different measurements of liquid in identical beakers, find the amount of liquid each beaker would contain if the total amount in all the beakers were redistributed equally. ### Geometric measurement: understand concepts of volume and relate volume to multiplication and to addition. - 3. Recognize volume as an attribute of solid figures and understand concepts of volume measurement. - a. A cube with side length 1 unit, called a "unit cube," is said to have "one cubic unit" of volume, and can be used to measure volume. - b. A solid figure which can be packed without gaps or overlaps using n unit cubes is said to have a volume of n cubic units. Montana Common Core Standards for Mathematical Practices and Mathematics Content ### Montana Mathematics Grade 5 Content Standards - 4. Measure volumes by counting unit cubes, using cubic cm, cubic in, cubic ft, and improvised units. - 5. Relate volume to the operations of multiplication and addition and solve real world and mathematical problems involving volume within cultural contexts, including those of Montana American Indians. - a. Find the volume of a right rectangular prism with whole-number side lengths by packing it with unit cubes, and show that the volume is the same as would be found by multiplying the edge lengths, equivalently by multiplying the height by the area of the base. Represent threefold whole-number products as volumes, e.g., to represent the associative property of multiplication. - b. Apply the formulas $V = l \times w \times h$ and $V = b \times h$ for rectangular prisms to find volumes of right rectangular prisms with whole-number edge lengths in the context of solving real world and mathematical problems. - **c.** Recognize volume as additive. Find volumes of solid figures composed of two non-overlapping right rectangular prisms by adding the volumes of the non-overlapping parts, applying this technique to solve real world problems. Geometry 5.G ### Graph points on the coordinate plane to solve real-world and mathematical problems. - 1. Use a pair of perpendicular number lines, called axes, to define a coordinate system, with the intersection of the lines (the origin) arranged to coincide with the 0 on each line and a given point in the plane located by using an ordered pair of numbers, called its coordinates. Understand that the first number indicates how far to travel from the origin in the direction of one axis, and the second number indicates how far to travel in the direction of the second axis, with the convention that the names of the two axes and the coordinates correspond (e.g., *x*-axis and *x*-coordinate, *y*-axis and *y*-coordinate). - 2. Represent real world and mathematical problems by graphing points in the first quadrant of the coordinate plane, and interpret coordinate values of points in the context of the situation including those found in Montana American Indian designs. ### Classify two-dimensional figures into categories based on their properties. - 3. Understand that attributes belonging to a category of two-dimensional figures also belong to all subcategories of that category. For example, all rectangles have four right angles and squares are rectangles, so all squares have four right angles. - 4. Classify two-dimensional figures in a hierarchy based on properties. ¹ Students able to multiply fractions in general can develop strategies to divide fractions in general, by reasoning about the relationship between multiplication and division. But division of a fraction by a fraction is not a requirement at this grade. ## **Glossary** Addition and subtraction within 5, 10, 20, 100, or 1000. Addition or subtraction of two whole numbers with whole number answers, and with sum or minuend in the range 0-5, 0-10, 0-20, or 0-100, respectively. Example: 8 + 2 = 10 is an addition within 10, 14 - 5 = 9 is a subtraction within 20, and 55 - 18 = 37 is a subtraction within 100. **Additive inverses**. Two numbers whose sum is 0 are additive inverses of one another. Example: 3/4 and -3/4 are additive inverses of one another because 3/4 + (-3/4) = (-3/4) + 3/4 = 0. **Associative property of addition**. See Table 3 in this Glossary. **Associative property of multiplication.** See Table 3 in this Glossary. Bivariate data. Pairs of linked numerical observations. Example: a list of heights and weights for each player on a football team. **Box plot**. A method of visually displaying a distribution of data values by using the median, quartiles, and extremes of the data set. A box shows the middle 50% of the data.¹ **Commutative property**. See Table 3 in this Glossary. **Complex fraction**. A fraction A/B where A and/or B are fractions (B nonzero). **Computation algorithm**. A set of predefined steps applicable to a class of problems that gives the correct result in every case when the steps are carried out correctly. *See also:* computation strategy. **Computation strategy**. Purposeful manipulations that may be chosen for specific problems, may not have a fixed order, and may be aimed at converting one problem into another. *See also*: computation algorithm. **Congruent**. Two plane or solid figures are congruent if one can be obtained from the other by rigid motion (a sequence of rotations, reflections, and translations). **Counting on.** A strategy for finding the number of objects in a group without having to count every member of the group. For example, if a stack of books is known to have 8 books and 3 more books are added to the top, it is not necessary to count the stack all over again. One can find the total by *counting on*—pointing to the top book and saying "eight," following this with "nine, ten, eleven. There are eleven books now." **Dot plot.** See: line plot. **Dilation**. A transformation that moves each point along the ray through the point emanating from a fixed center, and multiplies distances from the center by a common scale factor. **Expanded form**. A multi-digit number is expressed in expanded form when it is written as a sum of single-digit multiples of powers of ten. For example, 643 = 600 + 40 + 3. **Expected value.** For a random variable, the weighted average of its possible values, with weights given by their respective probabilities. **First quartile**. For a data set with median M, the first quartile is the median of the data values less than M. Example: For the data set $\{1, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the first quartile is 6.2 See also: median, third quartile, interquartile range. **Fraction**. A number expressible in the form a/b where a is a whole number and b is a positive whole number. (The word *fraction* in these standards always refers to a non-negative number.) *See also:* rational number. Montana Common Core Standards for Mathematical Practices and Mathematics Content Adapted from Wisconsin Department of Public Instruction, http://dpi.wi.gov/standards/mathglos.html, accessed March 2, 2010. Many different methods for computing quartiles are in use. The method defined here is sometimes called the Moore and McCabe method. See Langford, E., "Quartiles in Elementary Statistics," *Journal of Statistics Education* Volume 14, Number 3 (2006). Montana Mathematics Content Standards Glossary **Identity property of 0**. See Table 3 in this Glossary. **Independently combined probability models**. Two probability models are said to be combined independently if the probability of each ordered pair in the combined model equals the product of the original probabilities of the two individual outcomes in the ordered pair. **Integer**. A number expressible in the form a or -a for some whole number a. **Interquartile Range**. A measure of variation in a set of numerical data, the interquartile range is the distance between the first and third quartiles of the data set. Example: For the data set $\{1, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the interquartile range is 15 - 6 = 9. See also: first quartile, third quartile. **Line plot.** A method of visually displaying a distribution of data values where each data value is shown as a dot or mark above a number line. Also known as a dot plot.³ **Mean**. A measure of center in a set of
numerical data, computed by adding the values in a list and then dividing by the number of values in the list.4 Example: For the data set {1, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the mean is 21. **Mean absolute deviation**. A measure of variation in a set of numerical data, computed by adding the distances between each data value and the mean, then dividing by the number of data values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 120}, the mean absolute deviation is 20. **Median**. A measure of center in a set of numerical data. The median of a list of values is the value appearing at the center of a sorted version of the list—or the mean of the two central values, if the list contains an even number of values. Example: For the data set {2, 3, 6, 7, 10, 12, 14, 15, 22, 90}, the median is 11. Midline. In the graph of a trigonometric function, the horizontal line halfway between its maximum and minimum values. **Multiplication and division within 100**. Multiplication or division of two whole numbers with whole number answers, and with product or dividend in the range 0-100. Example: $72 \div 8 = 9$. **Multiplicative inverses**. Two numbers whose product is 1 are multiplicative inverses of one another. Example: 3/4 and 4/3 are multiplicative inverses of one another because $3/4 \times 4/3 = 4/3 \times 3/4 = 1$. **Number line diagram.** A diagram of the number line used to represent numbers and support reasoning about them. In a number line diagram for measurement quantities, the interval from 0 to 1 on the diagram represents the unit of measure for the quantity. **Percent rate of change.** A rate of change expressed as a percent. Example: if a population grows from 50 to 55 in a year, it grows by 5/50 = 10% per year. **Probability distribution.** The set of possible values of a random variable with a probability assigned to each. **Properties of operations**. See Table 3 in this Glossary. **Properties of equality**. See Table 4 in this Glossary. **Properties of inequality**. See Table 5 in this Glossary. **Properties of operations**. See Table 3 in this Glossary. **Probability**. A number between 0 and 1 used to quantify likelihood for processes that have uncertain outcomes (such as tossing a coin, selecting a person at random from a group of people, tossing a ball at a target, or testing for a medical condition). **Probability model.** A probability model is used to assign probabilities to outcomes of a chance process by examining the nature of the process. The set of all outcomes is called the sample space, and their probabilities sum to 1. *See also:* uniform probability model. ³Adapted from Wisconsin Department of Public Instruction, op. cit. ⁴To be more precise, this defines the *arithmetic mean*, one or more translations, reflections, and/or rotations. Rigid motions are here # Montana Mathematics Content Standards Glossary assumed to preserve distances and angle measures. Random variable. An assignment of a numerical value to each outcome in a sample space. **Rational expression.** A quotient of two polynomials with a non-zero denominator. **Rational number**. A number expressible in the form a/b or -a/b for some fraction a/b. The rational numbers include the integers. **Rectilinear figure.** A polygon all angles of which are right angles. **Rigid motion**. A transformation of points in space consisting of a sequence of **Repeating decimal**. The decimal form of a rational number. *See also:* terminating decimal. Sample space. In a probability model for a random process, a list of the individual outcomes that are to be considered. **Scatter plot**. A graph in the coordinate plane representing a set of Bivariate data. For example, the heights and weights of a group of people could be displayed on a scatter plot.⁵ **Similarity transformation**. A rigid motion followed by a dilation. **Tape diagram**. A drawing that looks like a segment of tape, used to illustrate number relationships. Also known as a strip diagram, bar model, fraction strip, or length model. **Terminating decimal.** A decimal is called terminating if its repeating digit is 0. **Third quartile.** For a data set with median M, the third quartile is the median of the data values greater than M. Example: For the data set $\{2, 3, 6, 7, 10, 12, 14, 15, 22, 120\}$, the third quartile is 15. See also: median, first quartile, interquartile range. **Transitivity principle for indirect measurement.** If the length of object A is greater than the length of object B, and the length of object B is greater than the length of object C, then the length of object A is greater than the length of object C. This principle applies to measurement of other quantities as well. Uniform probability model. A probability model which assigns equal probability to all outcomes. See also: probability model. **Vector.** A quantity with magnitude and direction in the plane or in space, defined by an ordered pair or triple of real numbers. Visual fraction model. A tape diagram, number line diagram, or area model. Whole numbers. The numbers 0, 1, 2, 3, ⁵Adapted from Wisconsin Department of Public Instruction, op. cit. ### **Tables** Table 1. Common addition and subtraction situations.¹ | | Result Unknown | Change Unknown | Start Unknown | | | |--|---|--|--|--|--| | | Two bunnies sat on the grass. Three more bunnies hopped there. How many bunnies are | Two bunnies were sitting on
the grass. Some more
bunnies hopped there. Then | Some bunnies were sitting on
the grass. Three more bunnies
hopped there. Then there | | | | Add to | on the grass now? $2 + 3 = ?$ | there were five bunnies. How
many bunnies hopped over to
the first two?
2 + ? = 5 | were five bunnies. How many bunnies were on the grass before? ? + 3 = 5 | | | | Take from | Five apples were on the table. I ate two apples. How many apples are on the table now? $5-2=$? | Five apples were on the table. I ate some apples. Then there were three apples. How many apples did I eat? $5-?=3$ | Some apples were on the table. I ate two apples. Then there were three apples. How many apples were on the table before? $?-2=3$ | | | | | | | | | | | | Total Unknown | Addend Unknown | Both Addends Unknown ² | | | | D. (T. 1) | Three red apples and two green apples are on the table. | Five apples are on the table.
Three are red and the rest are | Grandma has five flowers.
How many can she put in her | | | | | How many apples are on the | green. How many apples are | red vase and how many in her | | | | Put Together/
Take Apart ¹ | table? | green? | blue vase? | | | | | 3 + 2 = ? | 3 + ? = 5, 5 - 3 = ? | 5 = 0 + 5, 5 = 5 + 0
5 = 1 + 4, 5 = 4 + 1 | | | | | | | 5 = 2 + 3, 5 = 3 + 2 | | | | | | | | | | | | Difference Unknown | Bigger Unknown | Smaller Unknown | | | | | ("How many more?" version):
Lucy has two apples. Julie has | (Version with "more"): Julie has three more apples | (Version with "more"): Julie has three more apples | | | | | five apples. How many more | than Lucy. Lucy has two | than Lucy. Julie has five | | | | | apples does Julie have than | apples. How many apples | apples. How many apples | | | | - 2 | Lucy? | does Julie have? | does Lucy have? | | | | Compare ² | ("How many fewer?" version): | (Version with "fewer"): | (Version with "fewer"): | | | | | Lucy has two apples. Julie has five apples. How many fewer | Lucy has 3 fewer apples than Julie. Lucy has two apples. | Lucy has 3 fewer apples than Julie. Julie has five apples. | | | | | apples does Lucy have than | How many apples does Julie | How many apples does Lucy | | | | | Julie?
2 + ? = 5, 5 - 2 = ? | have?
2 + 3 = ?, 3 + 2 = ? | have? $5-3=?$, $?+3=5$ | | | | | , | , | ., | | | ¹These take apart situations can be used to show all the decompositions of a given number. The associated equations, which have the total on the left of the equal sign, help children understand that the = sign does not always mean makes or results in but always does mean is the same number as. ²Either addend can be unknown, so there are three variations of these problem situations. Both Addends Unknown is a productive extension of this basic situation, especially for small numbers less than or equal to 10. ³For the Bigger Unknown or Smaller Unknown situations, one version directs the correct operation (the version using more for the bigger unknown and using less for the smaller unknown). The other versions are more difficult. Adapted from Box 2-4 of Mathematics Learning in Early Childhood, National Research Council (2009, pp. 32, 33). Table 2. Common multiplication and division situations.¹ | | Unknown Product | Group Size Unknown | Number of Groups | | | |----------------------|---------------------------------|---|---|--|--| | | | ("How many in each | Unknown | | | | | | group?" | ("How many groups?" | | | | | | Division) | Division) | | | | | $3 \times 6 = ?$ | $3 \times ? = 18$, and $18 \div 3 = ?$ | $? \times 6 = 18$, and $18 \div 6 = ?$ | | | | | There are 3 bags with 6 plums | If 18 plums are shared | If 18 plums are to be packed | | | | | in each bag. How many plums | equally into 3 bags, then how | 6 to a bag, then how many | | | | | are there in all? | many plums will be in each | bags are needed? | | | | Equal | Measurement example. You | bag? | Measurement example. You | | | | Groups | need 3 lengths of string, each | Measurement example. You | have 18 inches of string, | | | | Groups | 6 inches long. How much | have 18 inches of string, | which you will cut into
pieces | | | | | string will you need | which you will cut into 3 | that are 6 inches long. How | | | | | altogether? | equal pieces. How long will | many pieces of string will | | | | | unogenier. | each piece of string be? | you have? | | | | | There are 3 rows of apples | If 18 apples are arranged into | If 18 apples are arranged into | | | | | with 6 apples in each row. | 3 equal rows, how many | equal rows of 6 apples, how | | | | | How many apples are there? | apples will be in each row? | many rows will there be? | | | | Arrays, ⁴ | | | | | | | Area ⁵ | Area example. What is the | Area example. A rectangle | Area example. A rectangle | | | | 12200 | area of a 3 cm by 6 cm | has area 18 square | has area 18 square | | | | | rectangle? | centimeters. If one side is 3 | centimeters. If one side is 6 | | | | | | cm long, how long is a side next to it? | cm long, how long is a side next to it? | | | | | A blue hat costs \$6. A red hat | A red hat costs \$18 and that | A red hat costs \$18 and a | | | | | costs 3 times as much as the | is 3 times as much as a blue | blue hat costs \$6. How many | | | | | blue hat. How much does the | hat costs. How much does a | times as much does the red | | | | | red hat cost? | blue hat cost? | hat cost as the blue hat? | | | | | 100 100 0000 | 51 45 1141 5 550. | nav esse as the stat have | | | | Compare | Measurement example. A | Measurement example. A | Measurement example. A | | | | • | rubber band is 6 cm long. How | rubber band is stretched to be | rubber band was 6 cm long at | | | | | long will the rubber band be | 18 cm long and that is 3 | first. Now it is stretched to be | | | | | when it is stretched to be 3 | times as long as it was at | 18 cm long. How many times | | | | | times as long? | first. How long was the | as long is the rubber band | | | | | | rubber band at first? | now as it was at first? | | | | General | $a \times b = ?$ | $a \times ? = p$, and $p \div a = ?$ | $? \times b = p$, and $p \div b = ?$ | | | ⁴The language in the array examples shows the easiest form of array problems. A harder form is to use the terms rows and columns: The apples in the grocery window are in 3 rows and 6 columns. How many apples are in there? Both forms are valuable. ⁵Area involves arrays of squares that have been pushed together so that there are no gaps or overlaps, so array problems include these especially important measurement situations. The first examples in each cell are examples of discrete things. These are easier for students and should be given before the measurement examples. **Table 3.** The properties of operations. Here a, b and c stand for arbitrary numbers in a given number system. The properties of operations apply to the rational number system, the real number system, and the complex number system. ``` (a + b) + c = a + (b + c) Associative property of addition Commutative property of addition a + b = b + a Additive identity property of 0 a + 0 = 0 + a = a Existence of additive inverses For every a there exists -a so that a + (-a) = (-a) + a = 0 Associative property of multiplication (a \times b) \times c = a \times (b \times c) Commutative property of multiplication a \times b = b \times a Multiplicative identity property of 1 a \times 1 = 1 \times a = a Existence of multiplicative inverses For every a \neq 0 there exists 1/a so that a \times 1/a = 1/a \times a = 1 Distributive property of multiplication over addition a \times (b + c) = a \times b + a \times c ``` Table 4. The properties of equality. Here a, b and c stand for arbitrary numbers in the rational, real, or complex number systems. ``` Reflexive property of equality a = a Symmetric property of equality If a = b, then b = a If a = b and b = c, then a = c Transitive property of equality Addition property of equality If a = b, then a + c = b + c Subtraction property of equality If a = b, then a - c = b - c Multiplication property of equality If a = b, then a \times c = b \times c Division property of equality If a = b and c \neq 0, then a \div c = b \div c If a = b, then b may be substituted for a Substitution property of equality in any expression containing a. ``` Table 5. The properties of inequality. Here a, b and c stand for arbitrary numbers in the rational or real number systems. ``` Exactly one of the following is true: a < b, a = b, a > b. If a > b and b > c then a > c. If a > b, then b < a. If a > b, then -a < -b. If a > b, then a + c > b + c. If a > b, then a + c > b + c. If a > b and a > 0, then a + c > b + c. If a > b and a > 0, then a + c > b + c. If a > b and a > 0, then a + c > b + c. If a > b and a > 0, then a + c > b + c. If a > b and a > 0, then a + c > c > c. ``` # **Learning Progressions by Domain** | Mathematics Learning Progressions by Domain | | | | | | | | | | |---|---|---|---------------------------|----------------------------|-------------------|---------|---------------------|---|----| | K | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | HS | | Counting and Cardinality | | | | | | | Number and Quantity | | | | Number and Operations in Base Ten Ratios and Proportional Relationship | | | | | | | | | | | Number and
Operations –
Fractions | | | | | The Number System | | | | | | Operations and Algebraic Thinking | | | Expressions and Equations | | | Algebra | | | | | | | | | Functions | | | | | | | Geometry | | | | | | | | | | | Measurement and Data | | | | Statistics and Probability | | | | | |